
92 Years to DevOps
A Motorola Solutions Story

Adam Lewis

Chief Security Architect

NIST Workshop on Improving the Security of DevOps

Practices

In the Beginning ...

Motorola Solutions

REQUIREMENTS

SECURITY

CHECK

DESIGN

SECURITY

CHECK

IMPLEMENTATIO

N

SECURITY

CHECK

TESTING

SECURIT

Y CHECK

MAINTENANCE

SECURITY

CHECK

● Waterfall-style development

approaches

● Monolithic applications &

systems

● Infrequent product releases: 6-12

months

● Checkpoints / gates between

phases

DEVELOPMENT

● Manual security checkpoints at

each phase

● One time assessments

● Exclusive access to security tools

● Sign off before release

CYBERSECURITY

Then Something Happened.

PRODUCTS/DEVICES
HARDWARE-CENTRIC

CRITICAL COMMUNICATIONS
REACT AND RESPOND

SITUATIONAL AWARENESS
COMMAND AND CONTROL

BEFORE

CONNECTING PEOPLE
VOICE-CENTRIC

PHYSICAL RESOURCES
DEDICATED NETWORK / COMPUTING / STORAGE

CONNECTED EVERYTHING
DATA-CENTRIC

INTELLIGENT ECOSYSTEMS
MULTI-MODAL / COGNITIVE

CRITICAL INTELLIGENCE
PREDICT AND PREVENT

CONTEXTUAL AWARENESS
INTELLIGENT EDGE

AFTER

VIRTUAL RESOURCES
SHARED NETWORKS / CLOUD / DATA

CLOUD + MOBILE

IMMUTABLE & EPHEMERAL

INFRASTRUCTURE

DAILY / HOURLY RELEASES

EMBRACING OPEN SOURCE

MICROSERVICES-BASED

ARCHITECTURE

ON PREM SYSTEMS

LONG LIVED

INFRASTRUCTURE

6-12 MONTH

RELEASE CYCLE

CLOSED SOURCE

MONOLITHIC

ARCHITECTURE

Not Your

Father's

Oldsmobile ...

Security needed to change.

(and so did development)

Motorola Solutions

The Great Chicago Fire of 1871

Lessons Learned and applicability to security in the age of DevOps

9

CULTURE SHIFT IN HOW WE APPROACH SECURITY

The Businesses

● Development teams = first line of defense

● Business owns the risk (at the right level)

Cybersecurity Organization

● Cyber org = second line of defense

● Enable business owners to make risk-

based decisions for their products &

customers

● Enable developers to own the security of

their code

Hiring more security

professionals is not

the solution

Motorola Solutions

● Security Champion program

● One champ per scrum team

● Focused training on Threat

modelling, secure coding

● Access to security scanning tools

for quick feedback

● Make it fun! - devs embrace it ->

easiest change but requires

investment

Quantify risk impact

● Product & customer context

Risk-based backlog prioritization

● Draw the "line" to recommend what

should be fixed

Trained in security processes

● Pre - & post-release security

● Incident response & recovery

Leadership support

● Drive cyber culture from the top

● Hold product teams accountable

Accountability

● Risk owner of severe product &

business risks

● Accept known risks and treatment

plans

Trained in security processes

● Crisis management

DEVELOPER PRODUCT

MANAGER

BUSINESS OWNER

11

From the team of ‘no’ to the team of ‘how’
● Empower developers to build secure code

● Empower product owners to prioritize their risk management

activities

● Empower business owners to accept risk (at the right level)

● Provide Training & Awareness

● Provide Policy, Standards, Guidelines, and Best Practices

● Provide Threat Intelligence, Pen tests, AppSec toolchain

Learn to Let go
● Recognize what can be taught or delegated

● Remove ourselves from critical paths

● Leave business decisions to the risk owners (NO SIGN-OFF)

CYBERSECURITY TEAM
POLICY | TRAINING | ENABLEMENT

Motorola Solutions

Motorola Solutions

INTEGRATED SECURITY
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

STAGE PROD

Motorola Solutions

INTEGRATED SECURITY
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

STAGE PROD

Security activities before code is
checked into version control

DEVELOPER TRAINING
THREAT MODELING
SECURITY AND PRIVACY STORIES
IDE SECURITY PLUGINS
PRE-COMMIT SECURITY HOOKS
SECURE CODING STANDARDS

Motorola Solutions

INTEGRATED SECURITY
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

STAGE PROD

Security activities before code is
checked into version control

DEVELOPER TRAINING
THREAT MODELING
SECURITY AND PRIVACY STORIES
IDE SECURITY PLUGINS
PRE-COMMIT SECURITY HOOKS
SECURE CODING STANDARDS

Fast, automated security checks during
the build and Continuous Integration
steps.

STATIC CODE ANALYSIS
SECURITY UNIT TESTS
SOFTWARE COMPOSITION ANALYSIS
CONTAINER SECURITY
CONTAINER HARDENING
CONTAINER IMAGE SIGNING

Motorola Solutions

STATIC CODE ANALYSIS
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

● White box testing (has full access to code)
● Looks for weaknesses in proprietary code (such as

SQLi) that could (potentially) result in an exploitable
vulnerability

● Finds bugs earlier in the SDLC where they are cheaper
to fix

● Lacks ability to discover runtime and environment
issues

● It’s still not fast enough, and needs to catch up to the
velocity of development

● Can produce too many findings to be actionable, and
also false positives

Open Source
It’s a Supply Chain Issue - What’s in YOUR code?

The average percentage of

an application comprised of

open source software

components

80%
Developers on GitHub,

including 10m new users in

2019. Over 44m new code

repos created in 2019.

40m+
The number of open source

components pulled in to

create a “Hello World”

program in a popular web

framework (1.1m lines of

code)

1,568

Motorola Solutions

SOFTWARE COMPOSITION ANALYSIS
WHAT’S IN YOUR CODE?

● Enumerates the open source packages used by code and
builds a Software Bill of Materials (SBOM)

● Cross-references the inventory in the SBOM with KNOWN
vulnerabilities from the Mitre National Vulnerability
Database (NVD)

● Also produces licensing findings (addresses the legal risk
of OSS)

Software Component

Transparency

Motorola Solutions

INTEGRATED SECURITY
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

STAGE PROD

Fast, automated security checks
during the build and Continuous
Integration steps.

STATIC CODE ANALYSIS
SECURITY UNIT TESTS
SOFTWARE COMPOSITION ANALYSIS

CONTAINER SECURITY
CONTAINER HARDENING
CONTAINER IMAGE SIGNING

Security activities before code is
checked into version control

DEVELOPER TRAINING
THREAT MODELING
SECURITY AND PRIVACY STORIES
IDE SECURITY PLUGINS
PRE-COMMIT SECURITY HOOKS
SECURE CODING STANDARDS

Automated security acceptance,
function testing, and deep out-
of-band scanning during
Continuous Delivery.

SECURITY SCANNING (DAST)

Motorola Solutions

DYNAMIC SECURITY SCANNING
ATTACKING YOUR CODE

● Operates on running code

● Black box testing (outside-in), has no knowledge of the internal

source code or frameworks.

● Unlike the others, DAST attempts actual exploits.

● Later in the SDLC and hence more costing to fix.

● Limitations: mostly just for web pages. Even web services is

lacking :-(

Motorola Solutions

INTEGRATED SECURITY
CONTINUOUS DEVELOPMENT + CONTINUOUS SECURITY

STAGE PROD

Fast, automated security checks
during the build and Continuous
Integration steps.

STATIC CODE ANALYSIS
SECURITY UNIT TESTS
SOFTWARE COMPOSITION ANALYSIS

CONTAINER SECURITY
CONTAINER HARDENING
CONTAINER IMAGE SIGNING

Automated security acceptance,
function testing, and deep out-
of-band scanning during
Continuous Delivery.

SECURITY SCANNING (DAST)

Security activities before code is
checked into version control

DEVELOPER TRAINING
THREAT MODELING
SECURITY AND PRIVACY STORIES
IDE SECURITY PLUGINS
PRE-COMMIT SECURITY HOOKS
SECURE CODING STANDARDS

Vulnerability Management

IDENTIFY
TRIAGE
PRIORITIZE
VALIDATE
DEPLOY

Motorola Solutions

WHAT GETS MEASURED GETS DONE

“Security has a problem with

Measurability.” #AppSecDC 2019

security conference

● Is the rate at which security defects are introduced

into applications trending down?

● Are security defects that are introduced getting

caught earlier in the development cycle?

● Are the TOTAL number of security defects in

production going down over time?

● What is the average time to remediate?

THANK YOU

Adam Lewis
@lewiada

24

TAKEAWAYS

●Development teams = first line of defense

○ Software Engineer = Security Engineer

●Security team = second line of defense

○ Enable developers to own the security

of their code (and security needs to slot

into dev, not the other way around)

○ Enable business owners to make risk-

based decisions for their products &

customers (at the right level)

●Pick one or two metrics, get good at them,

and then pick a few more

●Get senior leadership buy-in!

